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SUMMARY 

This paper deals with the comparative accuracy of using finite difference grids or a modal representation 
through the vertical in modelling tidally or wind wave induced current profiles. 

A point model is used in the vertical, with a no-slip condition at the sea bed. In the finite difference 
approach the high-shear bottom layer is resolved using either a regular grid on a logarithmic or log-linear 
transformed co-ordinate or an irregular grid, varying in such a manner as to retain second-order accuracy. 
The accuracy of these various grid schemes is considered in detail. 

The relative merits of using either the Crank-Nicolson or Dufort-Frankel time integration methods are 
considered; in the case of a fine grid in a high-viscosity region, some numerical problems are found with the 
Dufort-Frankel method. 

An alternative approach to using a finite difference grid in the vertical, namely a modal (spectral) method, 
is described. The form of the modes is such that they can accurately resolve the high-shear bottom boundary 
layer. 

Calculations show that the thickness of the bottom boundary layer in relation to the total water depth is 
important in determining the choice of grid transform and rates of convergence of solutions using finite 
difference or modal methods. However, for the majority of problems the modal solution is numerically 
attractive owing to its computational efficiency and the ease with which solution algorithms based upon it 
can be coded in vectorizable form suitable for the new generation of vector computers. 

The influence of viscosity profile, its time variation and water depth upon tidally induced or wave induced 
currents is considered. Calculations suggest that near-bed measurements of tidal flow in shallow water 
together with associated modelling would enable appropriate formulations of eddy viscosity to be deter- 
mined. Similar measurements, though using a laboratory flume, would be appropriate for wind wave 
problems. 

KEY WORDS Finite difference Spectral Tidal wave Wind wave Crank-Nicolson Logarithmic transform 

1.  INTRODUCTION 

Although the number of applications' - lo  of three-dimensional hydrodynamic models has 
increased in recent years, the majority of these models do not include the very-near-bed layer, 
where high current shear occurs. In general these models apply a slip condition at the sea bed, 
with the bed stress related to the current 1 m above the bed. Consequently, such models cannot 
determine the near-bed current profile and shear stress distribution, which are important in a 
number of problems, e.g. sediment transport. 

Future three-dimensional shelf sea models which can resolve the bottom boundary layer are 
now being developed. However, it is not clear at present just what is the most computationally 
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efficient means (e.g. finite difference or modal) of computing current profiles in such models when 
it is necessary to accurately resolve the high-shear bottom boundary layer. Also, the problem of 
wave-current interaction and its influence upon bed stress is particularly important in sediment 
movement problems, and any numerical technique used in the vertical should be able to include 
an accurate representation of the highly sheared near-bed wave boundary layer. 

In this paper the accuracy and computational efficiency of solutions using various finite 
difference grids in the vertical are compared with a significantly different approach in which the 
Galerkin method with an expansion of functions is used through the vertical (a modal/spectral 
method). 

In the finite difference solution, enhanced resolution in the near-bed region is obtained using 
either a logarithmic or log-linear transformation through the vertical and a uniform finite 
difference grid. An alternative approach in which the grid varies in such a manner as to give fine 
resolution in the near-bed layer but retains second-order accuracy (the kappa grid developed by 
Noye". 12) is also considered. 

In the functional (spectral) model a basis set of eigenfunctions (modes) of the eddy viscosity 
profile is used to compute the current profile. These modes satisfy a no-slip bottom boundary 
condition, and their vertical form is such that they are highly sheared in the near-bed region. By 
this means they can accurately resolve the bottom boundary layer. 

The development of these various numerical methods for representing the current profile in the 
vertical is considered in the next section. In Sections 3 and 4 the accuracy and computational 
efficiency of the various approaches are considered for currents at both tidal and wind wave 
period in various depths of water. The sensitivity of computed current profiles to the vertical 
profile of eddy viscosity and its time variability is also considered. 

2. HYDRODYNAMIC EQUATIONS AND THEIR NUMERICAL SOLUTION 

2.1. Hydrodynamic equations 

For a single-point model in the vertical the governing hydrodynamic equations are given by 

av ap a 
at ay a,( i ~ )  - + y u = - + -  p- 

In these equations the Coriolis parameter y is constant, with p denoting the coefficient of eddy 
viscosity and P the externally applied pressure forcing. 

For sinusoidal forcing at a single frequency w we express the pressure gradients as 

= wF, cos (wt)  , ap 
ax - 

ap -_ -COG, cos (wt) , 
a Y  

(3) 

(4) 

with F,, G, the amplitude of the external forcing. 

co-ordinate. 
In equations (1)-(4), u and v are the x- and y-components of the current, with z the vertical 
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For tidal or wind wave induced flows a zero-stress surface boundary condition is applied; thus 

In contrast to other  calculation^^*^ which have employed a slip condition at the sea bed, the 
primary aim of the present series of calculations is to investigate accurate means of resolving the 
bottom boundary layer which arises when a no-slip condition, namely 

u=v=o,  
is applied at the sea bed. 

2.2. Numerical solution using a finite difference grid in the vertical 

Several algebraic transformations exists in the literature which can be used to transform 
equations (1) and (2) in such a manner that the discretized form of the transformed equations on 
regular grids is physically equivalent to using a grid with enhanced resolution in the near-bed 
region. 

Appropriate transformations, onto a co-ordinate s, are either logarithmic of the form 

s = ln(z/S,)/p, with p = ln(z/h) , 
or log-linear of the form 

s=[ In( ;)+( 7 ) ] / p ,  with p=ln( :)+-. h - S o  

s* 

(7) 

In these transformations, h is the water depth and So is a small parameter which removes the 
logarithmic singularity at z = O  and determines the degree of grid resolution in the near-bed 
region. The parameter S ,  in the log-linear transformation is an arbitrary height above the sea bed 
over which the grid is essentially logarithmic. 

It can be readily shown from (7) that 

Using equation (1) for illustrative purposes, transforming gives 

The numerical solution of equation (10) can be readily accomplished using the Crank-Nicolson 

Thus at the kth grid point we have 
method in the time domain, with a finite difference grid in the vertical. 

(1 1) 

with 6 u k  = u k +  - tlk and A the vertical grid spacing. A staggered finite difference grid with 
respect to viscosity and flow has been used in the vertical (see Figure 1). Also, Wk = l / ~  evaluated 
at u grid point k and w k  = 1/x evaluated at the midpoint between u grid points k + 1 and k (see 
Figure 1). 

e2 wk + 7 ( p i  w k h u i - p i  - 1 w k  - 16 ui - 1) 9 
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Figure 1. Finite difference grid in the vertical 

In equation ( 1  l), lies in the range 0<8, < 1, with 8, = 1.0-8,. In the Crank-Nicolson 
method the solution is time-centred with = 8, =05. 

An alternative to the Crank-Nicolson time integration method is to apply the Dufort-Frankel 
approach, which utilizes three time levels in the vertical (see Reference 13 for details). By this 
means an unconditionally stable method can be obtained by centring the diffusion term in time. 
Thus, considering a simple diffusion problem 

au - a Z u  

z - p s >  
the Dufort-Frankel method gives 

Obviously, this method can be readily applied to the discretization of equation (10) to yield a 
similar finite difference equation (see Reference 13 for details). 

One problem with the Dufort-Frankel method is that odd and even time steps can become 
decoupled. This can, however, be avoided by applying some time filtering every n time steps, 
which serves to combine the solutions. 

A simple but effective time filterI4 is of the form 

F( t ) = F (  t )+ 0 3 v [ ~ ( t  + z)- 2 F ( t )  + F(t-z) l ,  (13) 
where F ( t )  is the new time-filtered value of the current at time step t and v is a weighting in 
the range 0 < v < 1 which determines the extent of filtering. In the calculations presented later, 
v = 0.5. 

2.3. Numerical solution using a kappa grid in the vertical 

Instead of using a transformation method with a regular finite difference grid to enhance grid 
resolution in the near-bed region, an irregularly spaced finite difference grid can be employed. In 
this case it can be shown", that second-order accuracy can be retained in the vertical if the grid 
spacing changes such that 

ASk = AS, - (1  KASk - ) , (14) 
where Ask is the grid spacing between the k +  1 and k points and K is an arbitrary constant that 
determines how rapidly the grid changes. A high value of K giving a coarse grid changing rapidly 
through the vertical to a fine one, whereas K = O . O  represents a uniform grid. 

A detailed discussion of finite difference methods based upon an irregular grid generated using 
recursion (12) (a kappa grid) can be found in the literature". and will not be presented here. 
Also, the approach can be readily applied with the Crank-Nicolson method to discretize 
equation (10). 
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2.4. Numerical solution using the Galerkin method in the vertical 

An alternative to using a finite difference grid in the vertical is to expand the two components of 
velocity, u and v, in terms of time-dependent coefficients Ar(t), Br(t) and functionsf,(s) in the 
vertical. 

Thus 

where s=z/h is a normalized (with respect to depth) vertical co-ordinate. 

boundary condition (equation (6)), the basis functions must be such that 
In general, the choice of basis functionsf,(s) is arbitrary. However, in order to satisfy the no-slip 

f , ( O ) = O  for all r. (16) 
Consider for illustrative purposes equation (1). Applying the Galerkin method to this equation 

(see References 3-5 and 15 for details), transforming from z to s and integrating the term 
involving eddy viscosity by parts gives 

k = l , 2 , .  . . ,m. (17) 

Taking into account conditions (16) and (3, equation (17) simplifies to 

For the general case in which the eddy viscosity evolves through time, there is a significant 
computational advantage3 -’* in expressing p in the form 

with m j ( s )  an arbitrary set of functions in the vertical. 

retaining a single functional form @(s) in the vertical; thus 
Here we consider the much simpler case in which the eddy viscosity varies with time, although 

(20) 
with a an arbitrary coefficient which can vary with horizontal position and time and can depend 
upon the current. 

P = 4 t ) W  9 

Substituting (15) and (20) into (18) gives 

For the case in which 0 is independent of x, y and t, the m equations in (21) can be uncoupled 
by choosing thef, to be eigenfunctions of 
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with eeigenvalues solved subject to boundary conditions that 

- =O and f,(O)=O. :: I l  
For the case in which the basis functionsf, are eigenfunctions of (22), subject to boundary 

condition (23), equation (21) can be further simplified by taking advantage of the orthogonality 
property of eigenfunctions, namely 

ro 
J lf,.&ds=O, r#k.  

The eigenfunctions are also normalized such that their surface value is unity; thus 

f , ( l )= l ,  r = l , 2 , .  . . ,m. 
Writing for convenience expansions (15) in the form 

m m 

U =  C Arf ,=  2 ~ , $ ~ f , ,  
r =  1 r =  1 

with t,hr = l/j:f,f, ds, equation (21) simplifies to 

where a, = jyfkds, with a corresponding equation 

These equations can be readily integrated through time and are unconditionally stableS if the 
viscosity term is centred in time; thus 

Rearranging equation (29) gives 

Since the k equations in (30) are uncoupled and U:+r appears only on the left-hand side, this 
equation can be readily integrated using a simple forward time-stepping algorithm. The com- 
putational effort in solving the full three-dimensional hydrodynamic equations using m functions 
in the vertical is significantly l e d 6  than that involved using a similar number of grid boxes. Also, 
it has recently been shown" that such a method can be readily vectorized on a parallel computer 
to yield a particularly fast and computationally economic algorithm. 

The modal method also yields significant insight (see References 5 and 18 for details) into the 
processes determining the current structure and the time variability of current. For example, if the 
term involving rotation is neglected in equation (27), we have 
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If we consider the case of a suddenly applied forcing aP/ax  in equation (31), which starts 
determined by the motion from rest, then initially each mode k is excited, with a weighting 

values of # k  and ak. Once excited, the modes decay with a decay time scale T D  given by 

Since the eigenvalue &k increases (see Tables I and 11) with mode number, higher modes are 
damped more rapidly than lower ones. Also, as expected, all modes are damped more rapidly if 
the average eddy viscosity ct is increased. It is also interesting to note that the decay time increases 
as the square of the water depth, and consequently the effects of transients persist longer in deeper 
than in shallow water. The importance of the decay time T D  in understanding the time scale 
required to reach a periodic solution, and the influence of modal structure on current profiles, will 
be discussed in more detail in subsequent sections. 

Table I. Comparison of computed and exact values of eigenvalues and eigenfunction derivatives at the sea 
bed with knot spacing shown, for a constant eddy viscosity of 1 m2 s-' 

Eigenfunct ion 
(mode) 
number 

Eigenvalue Eigenfunction derivative at the sea bed 

Numerical Exact 
~ ~~ 

Numerical Exact 

1 
2 
3 
4 
5 

10 
15 

2.4674 2.4674 
22.2066 222066 
6 1.685 1 61.6850 

120.903 120.903 
199.860 199.860 
891.335 890.732 

21 1094 2075.08 

- 1.5708 - 1.5708 
4.7 124 4.7123 

10.9955 10.9954 

29.845 1 29.8563 

-7'8539 - 7.8539 

- 14'1371 - 14.1370 

- 45.6764 -45.5531 

Knot spacing* 
0.0 (0.05) 0.8 0.84 (0.02) 0.96 (0.005) 099 (0.0025) 0.995 (00005) 0.999 (00002) 0.9994 (0.0001) 
0-9996 (O~ooOo5) 0.9999 (O"02) 0.99996 (0~00001) 099998 (0.0005) 1.0 

* The knot spacing shown here is such that the first knot A, (see Figure 3) is placed at zero, with subsequent knot intervals 
given by the term in brackets up to the knot positioned at 0% Other knot spacings and intervals follow the same 
convention. 

Table 11. Eigenvalues, normalized by dividing by the mean eddy viscosity a, and integrals of 
the modes (eigenfunctions) computed with eddy viscosity profile B (see Figure 2), with 
,ql=O.l rn's-', ,qo=O.OOO1 m2s-'  and hl=0.2h, for h=lOm.  With these parameters the 

mean eddy viscosity ct x 0.09 m2 s- ' 
Eigenfunction 
(mode) Eigenvalue Integral Integral 
number Er ILr a, 0 

0.738 1.262 0.882 - 585.8 

44.779 1.778 0.038 - 1517.0 

0019 - 2627.1 

13.182 1.874 - 0.082 967,5 

89.985 1.628 - 0-028 2291.1 
149655 1.712 
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3. NUMERICAL CALCULATIONS 

3.1. Form of eddy viscosity 

Since the principle aim of the calculations presented here is to compare the numerical accuracy 
of the functional and grid box approaches, it is instructive to consider a range of eddy viscosity 
formulations. Idealized profiles and time variations of viscosity are considered in the calculations 
to enable a clear and comprehensive comparison of the various approaches to be made. 

The simplest profile of viscosity is one which is constant through the vertical (Figure2, 
profile A). However, such a profile does not reflect the linear reduction in eddy viscosity which is 
known to occur in the near-bed region (Figure 2, profile B). Just over what distance the eddy 
viscosity increases in the near-bed region is difficult to assess. Measurements of Bowden and co- 
w o r k e r ~ ' ~ . ~ ~  suggest that h ,  is of order 0.1-02 of the water depth. In profile B we fix h ,  =0.2h. 

At the sea bed po is given by 
Po = KO U*Zo  Y 

where Ko=0.4 is Von Karman's constant, U ,  is the frictional velocity of order 2-4 cm 
2, is the roughness length of order 0.01-0.001 m, giving po of order 04001 m2 s-'. 

and 

Above the bottom boundary layer the eddy viscosity p, is given by 

P' =0.0025hIuI. (33) 

For strong tidal currents u is of order 1 ms- ' ,  and in typical shallow water depths of order 
20 m equation (33) gives p1 =0.05 m2 s-' .  

An alternative formulation4 is given by 

pl  = K u 2 / a ,  (34) 
which, with K=2.0x  lo-' and ~ = l O - ~ s - ' ,  for u = l  ms-', gives p1=0.2m2s- ' .  

from the bottom boundary layer in a tidal flow of 1 ms-' .  
In an initial series of calculations we take p1 = 0 1  m2 s - l  as typical of the eddy viscosity away 

3.2. Eigenfunction accuracy 

the eigenvalue problem is given by 
For the case in which the eddy viscosity is constant in the vertical, with a value a, the solution of 

A B 
Figure 2. Profiles of eddy viscosity used in the calculations 
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with , lr=rn/2, r =  1 ,3 ,5 , .  . . , co. In this case the accuracy of the computed eigenfunctions can be 
readily checked by comparing them against the analytical solution. 

Values of the eigenvalues and the vertical derivative of the eigenfunction at the sea bed 
(important in bed stress determination), computed using an expansion of fourth-order B-splines 
with the order of 60 knots in the vertical, are shown in Table I for a= 1 m2 s-'. The fourth-order 
B-splines are piecewise polynomials which are non-zero only over a finite interval (Figure 3). 
Points along the z-axis at which the B-spline changes from zero to non-zero are termed knots, 
denoted by ;li. Figure 3 shows the interval from sea surface to sea bed, divided into 10 interior 
knot segments. The number, position and separation of the knots are arbitrary and hence 
resolution can be increased in any region. The knot spacing was arranged such that it became 
very fine, of order 0.00005 of the water depth in the near-bed region (see Table I). It is evident that 
with this knot spacing, both the eigenvalues and the vertical derivative of the eigenfunction in the 
near-bed region could be accurately determined for the lower modes, with some slight error 
occurring in the higher ones. However, as we shall show later, it is the lower-order modes which 
contribute most to the solution. 

It is interesting to note that when the eddy viscosity in the near-bed region is reduced, the 
vertical derivative increases (compare Tables I and 11) and the modal structure is more highly 
sheared in the bed layer (Figure 4; compare profiles A and B). As we shall show later, this change 
in modal structure and bed shear is reflected in the computed current profiles. 

3.3. Numerical calculations 

Tidal wave of 12 h period, water depth h = 10 m. In an initial series of calculations the eddy 
viscosity did not vary with time and a specified profile A or B was used, with p=O.1 m2 s - l  for 
profile A and p1 =0.1 m2 s-l, p,=O~OOOl m2 s-' for profile B. 

Motion was driven by a unit pressure forcing of 12 h period (denoted by period D 2 )  in the 
x-direction, i.e. F,= 1.0, G,,=O.O, suddenly applied at time zero. Initially the effects of rotation 
were removed, i.e. y =O.O in equations (1) and (2). A time step of 3 min was used with the 
Crank-Nicolson method to integrate equation (1) forward in time; however, a stable solution for 
the current could be obtained with a time step of order 30 min, although the accuracy is reduced 
with such a large time step.21 

I \  \ 

1 -/ I . ,-/  
I I I I 1 I I I 1 1 I I I 1 I I 

A3 A2 AI A, X I  A 2  A, A, A, A, A, A, A, A,, 4, 4, 4, 
0 I 

SEA SEA 
SURFACE BED 

Figure 3. Distribution of B-splines and associated knots with depth 

I 
I I Z U A X I S  
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r = l  r = 2  r = 3  r = 4  r = 5  

Figure 4. Vertical variation of the first five modes computed with viscosity profiles A and B 

The Crank-Nicolson method was found to yield a stable and accurate solution with z of order 
12 min even when the eddy viscosity was high, p=O.1 m2 s-', at all depths (profile A, Figure 2), 
and a very fine grid (a logarithmic transform with so=O~OOO1 m) was used close to the bed. 
Although a stable solution for the current profile could be obtained under these conditions, the 
near-bed currents showed some grid scale oscillations in the vertical and with time, giving time 
step oscillations in the bed stress. (A similar time step oscillation was found by Davies and 
Jones" in the bed stress computed with a turbulence energy model, but was cured with no loss of 
accuracy by arranging the turbulence production and dissipation terms in such a manner as to 
introduce some slight time smoothing.) By introducing some slight time filtering by applying the 
filter given in equation (13) at every 0.5 h in the tidal cycle, any oscillations in the bed stress were 
removed with no effect upon the current's accuracy. 

The Dufort-Frankel method, although requiring some time filtering to couple together odd 
and even time steps, failed to produce a stable solution with p=O.1 m2s-'  and the fine 
logarithmic grid near the sea bed (so = 0.0001 m). In general the Dufort-Frankel method did 
exhibit instabilities (even with significant time smoothing, e.g. every three or four time steps) when 
the eddy viscosity was high in a fine-grid region (viscosity of order 0.05 m2 s-'  with grid spacing 
As of order 0.001). The Crank-Nicolson method, however, proved very stable and was used in all 
grid calculations described in this paper. The excellent stability properties of the Crank-Nicolson 
method are supported by recent calculations of Lardner and Cekirge.22 

Calculations using the modal model with the viscosity term centred in time (equation (30)) 
proved to be unconditionally stable for all viscosities, modal structures and time steps, and no 
time smoothing was required in any calculations using the modal approach. 

Because motion was started from rest (zero initial current) by the sudden imposition of the 
forcing terms given in equation (3), it was necessary to integrate forward in time for the order of 
two tidal periods before the influence of these initial conditions was removed and the current 
became periodic. Once a periodic state was reached, a Fourier analysis was then performed using 
computed currents at each time step over a 12 h period in order to determine the amplitude and 
phase of the fundamental and, in the case of time-varying viscosity, the higher harmonics. 
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In the present case the eddy viscosity is time-invariant and consequently only the amplitude of 
the fundamental period (period D , )  was non-zero. However, in the case of a flow-dependent eddy 
viscosity (see later), other higher harmonics (denoted by D, having a period of 6 h and D, with a 
period of 3 h) could be generated. 

Amplitudes and phases of the current at various heights z above the sea bed, computed using 
both the logarithmic and log-linear transforms with two different values of so (the parameter 
determining the grid resolution in the near-bed layer), are shown in Table 111. Also shown in this 
table are amplitudes and phases computed using the modal model. 

It is evident from this table that when the eddy viscosity is constant in the vertical 
(p=O*1 m2s-'), near-bed currents (i.e. within the bottom 1 m) are less than 1 cms-'. With 
p=O.1 m2 s - l  the flow is very viscous and the retarding influence of the bottom in a water depth 
of 10 m reaches the surface. The retarding influence of the bed was clearly evident in the surface 
current, the amplitude of which was only 5.7 cms-', which is significantly less than the 

Table 111. Amplitude ho (cms-') and phase go (deg) of near-bed tidal currents computed using a time-independent 
viscosity with profiles A and B in a water depth h= 10 m. Currents were computed using both grid boxes and modes 

through the vertical 
~~ ~ ~ 

Log-linear (so = 0.001 m, s* = 5 m) 
Number of grid boxes, N 

~~ ~~ 

Logarithmic (so=O~oooO1 m) 
Number of grid boxes, N 

10 20 
Height 
(m) ho 90 ho 90 

60 

ho go 

Viscosity profile A 

0.05 0.06 181 0.06 181 
0.10 0.11 181 0.13 181 
1 .00 1.1 181 1.2 182 
2.50 2.5 181 2.8 182 
5.00 4.2 181 4.8 182 

0.06 182 
0.13 182 
1.3 182 
2.9 182 
4.9 183 

0.03 180 0.05 181 0.06 182 
0.07 180 0.10 181 0.13 182 
0.6 180 0.90 181 1.2 182 
1.3 180 2.1 181 2.8 182 
1.5 180 3.4 181 4.8 182 

Viscosity profile B 
0.05 6.7 188 7.4 188 7.6 189 4.5 184 6.6 187 8.1 190 
010 8.2 188 9.1 189 9.4 189 5.4 184 8.0 187 9.9 190 
1 .oo 13.7 188 14.9 189 15.2 189 8.6 184 12.3 187 15.4 190 
2.50 15.5 188 16.9 189 17.3 189 9.6 184 13.8 187 17.4 190 
5.00 17.0 188 18.9 189 19.3 189 9.8 184 15.0 187 19.3 190 

Viscosity profile A 
Number of modes, M 

Viscosity profile B 
Number of modes, M 

5 10 15 5 10 15 
Height 
(4 ho go ho 90 ho go ho 90 ho go ho go 

Eigenfunction solution 
0.05 007 182 0.07 182 0.07 182 9.2 191 9.2 191 9.3 191 
0.10 0.14 182 0.14 182 0.14 182 11.1 191 11.2 191 11.1 191 
1 .00 1.4 182 1.4 182 1.4 182 17.4 191 17.4 191 17.4 191 
2.50 3.2 182 3.2 182 3.2 182 19.6 192 19.6 192 19.6 191 
5.00 5.4 182 5.4 183 5.4 182 21.9 192 21.9 192 21.8 191 
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100 cm s-  which would occur if the flow was inviscid. In this calculation the thickness of the 
bottom boundary layer exceeded the water depth and the flow was sheared up to the surface. 
However, this shear was only gradual, namely 5.7 cm s -  ' in 10 m. 

It is evident from Table 111 that the solution computed using the log-linear transform 
converges very rapidly as the number of grid boxes, N ,  is increased in the vertical. The solution 
computed with N = 20 was not significantly different from that computed with N = 60. In the case 
of the logarithmic transformation a slower rate of convergence is evident (although that 
computed with N = 60 is in good agreement with the log-linear transform). The logarithmic 
transformation used here gives a very fine grid spacing in the near-bed layer, with a significantly 
coarser spacing above. The effect of this is that when N is low (of order 10 or 20) there is 
insufficient resolution above the bed layer to adequately resolve the significant shear which still 
exists in the water column. 

The modal solution was found to converge very rapidly, with currents computed with five 
modes identical to those computed with 15 modes (see Table 111). In general, good agreement was 
obtained between the modal model and that computed using 60 grid boxes (see Table 111) with 
either a logarithmic or log-linear transform, although currents computed with the modal model 
were slightly higher than those obtained with the grid box model. 

As discussed earlier, solutions computed with a constant eddy viscosity, although an interesting 
test of the various methods, are not physically realistic. It is clear from Table 111 that when the 
eddy viscosity at the sea bed is reduced to 0.0001 m2 s - l ,  the near-bed current is enhanced. As in 
the previous example, solutions computed using the log-linear transform converge more rapidly 
than those based on a logarithmic transform, though solutions computed with 60 grid boxes in 
the vertical are not significantly different. Again the modal solution converges very rapidly; 
although the current magnitude is slightly higher than in the finite difference model, there is 
excellent agreement in the phase. 

It is evident from these calculations that the log-linear grid for tidal problems appears to have 
some advantage over a logarithmic grid when the boundary layer occupies the total water 
column. However, the rate of convergence of the modal model is clearly much higher, and in 
problems where the shear layer extends though the water column it appears optimal. 

Tidal wave of 12 h period, water depth h = 100 m. In a physically realistic, three-dimensional 
simulation of tides on the continental shelf, a range of water depths from the order of 10-100 m 
will occur. 

As shown in Section 2 and demonstrated in the previous calculation, modal convergence would 
be expected to be more rapid in a shallow than in a deep region. To check that an accurate 
solution can still be obtained using a modal expansion in deep water, the previous calculation was 
repeated in a water depth of 100 m. It is evident from Table IV that in such a water depth the 
sheared bottom boundary layer is only of the order of 25-50 m thick and hence, in contrast to the 
previous calculation, is only a fraction of the water column. 

Again motion was started from rest; however, unlike in the previous case, four to five tidal 
cycles were required to obtain a steady state. The reason for this much slower decay of transients 
when h = 100 m as opposed to h = 10 m can be readily understood from equation (32). It is evident 
from this equation and Table I1 that the first mode has the slowest decay time scale, and also from 
Table 11, a, is largest for this mode and hence it is the dominant one. 

From equation (32), taking a =0-09 m2 s-', E' =0-738 (Table 11) and h =  100 m gives a value of 
TD of order 42 h, whereas with h = 10 m, TD is of order 0.42 h. This explains why approximately 
five tidal cycles (60 h) were required for transients to decay in a water depth of 100 m compared 
with a rapid adjustment in shallower water. 
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Table IV. Amplitude ha (cms-') and phase go (deg) of near-bed tidal currents with a time-independent viscosity in a 
water depth h =  100 m 

~~ 

Log-linear (so = O W 1  m, s* = 50 m) 
Number of grid boxes, N 

Eigenfunctions 
Number of modes, M 

10 20 60 5 10 15 
Height 
(m) ho go ho go ho go ha go ho go ho go 

Viscosity profile A 

0.5 1.7 
1 .o 3.6 

10.0 32.7 
25.0 67.8 
50.0 99.5 

Viscosity profile B 
0.5 48.9 
1 .o 57.8 

10.0 89.7 
25.0 98.1 
50.0 102.9 

224 
226 
232 
232 
253 

251 
257 
261 
262 
261 

1.8 
3.1 

33.0 
68.0 
99.1 

49.1 
59.5 
90.6 
98.9 

102.8 

225 
225 
232 
242 
254 

256 
256 
260 
263 
267 

1.9 225 
3.7 225 

33.1 232 
68.1 242 
98.9 255 

49.8 256 
60.0 251 
91.1 261 
99.0 264 

102.8 267 

1.8 226 1.5 232 1.7 228 
3.4 232 3.6 228 3.1 226 

32.6 233 33.3 232 33.2 232 
61.2 243 61.8 242 67.9 242 
98.4 255 98.4 255 98.4 255 

50.3 251 50.4 251 50.5 256 
60.5 251 60.1 251 60.1 256 
91.4 260 91.3 260 91.4 261 
99.0 263 99.1 263 99.1 264 

102.7 267 102.1 267 102.6 267 

It is clear from Table IV that solutions (with profile A or B) computed using both the finite 
difference approach on a log-linear grid and the modal method converge very rapidly, with no 
significant difference in the solutions computed with the two methods. Again an accurate solution 
can be obtained using the order of five modes in the vertical, and the modal solution is probably 
optimal in this case in view of its low computational overhead and ability to code in a 
vectorizable form.' 

Tidal flow with a time-dependent viscosity. In any physically realistic simulation, besides 
variations in water depth, the eddy viscosity would be expected to evolve with the flow field. In 
order to determine if using an eddy viscosity formulation given by equation (33) or (34) has a 
significant influence on the computed current, it is instructive to compute the tidal flow in both 
shallow (h = 10 m) and deep (h = 100 m) regions. Also as a check on the accuracy of the solution, 
and a comparison of the model with transformed grid and kappa grid in a physically realistic 
situation, these various methods were used in the calculation. Viscosity profile B was applied, 
with the viscosity given at any depth and time by 

with f ( p )  the profile of viscosity (profile B, Figure 2, with p1 =01, p o  = 0.0001) and j the vertically 
averaged value of p, and p( t )  given by equation (33) or (34). 

Such a separation into a time-independent function with a time-varying coefficient is of course 
an approximation. However, comparisons of computed and observed tidal profiles3* using such 
a separation are in general in good agreement, thus justifying its use. 

Since the eddy viscosity varies with time in these calculations, higher tidal harmonics and a 
mean flow can be generated. However, the time variation of the viscosity was such that only the 
second harmonic (D6 having a period of 3 h) of the fundamental was produced. 
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Considering initially eddy viscosity related to the square of the flow, currents computed with 
five, 10 or 15 modes showed no significant differences. Computed profiles at 1 h intervals over a 
tidal cycle (see Figure 5 )  showed that using five modes it was possible to reproduce the high-shear 
bottom boundary layer and the near-linear variation of current with height above this layer. 
However, currents computed using 60 grid boxes in the vertical showed some slight differences 
depending upon whether a log-linear or logarithmic transform was used (see Table V). It is 
interesting to note that in many cases the modal solution lay between those computed with 
log-linear and logarithmic transforms, with five modes giving solutions of comparable accuracy 
to those computed using 60 grid boxes in the vertical. 

Besides using a transformed grid in the vertical, it is instructive to examine the accuracy of the 
current profile determined using the kappa method. For small values of kappa (K < 5), near-bed 
currents (the region below 1 m) were significantly lower (of order 3 cm s-'  for h = 10 m, 6 cm s - l  
for h = 100 m) than those computed by the other methods, although at mid-depth (particularly 
when h =  100 m) they were not significantly different (see Table V). For higher values of kappa 
( K >  lo), near-bed currents were in better agreement with those computed using modes or 
transformed grids, although currents at mid-depth when h = 10 m were below those computed 
using the other methods. 

The reason why near-bed currents are underestimated when K = 3.5 but are computed correctly 
when K =  14.0 is due to the fact that with a small value of K the grid in the near-bed region is too 
coarse (see Table VI) and cannot accurately resolve the high shear which occurs in this area (see 
Table V). Increasing K to 14-0 gives a fine grid close to the bed, enabling the shear layer to be 
accurately resolved, comparable with that obtained using a log-linear transformation with 
so = 0.001 (Tables V and VI). However, this value of K does produce a very coarse grid higher in 
the water column (see Table VI) even when 100 grid boxes are used in the vertical. In the case of a 
water depth of 10m, current shear occurs up to the water surface, and with this value of K, 
currents at mid-depth cannot be accurately determined (Table V). 

However, in the case of a water depth of 100 m, by mid-depth the flow is close to its free stream 
value of 100 cm s - l  and there is little shear in the water column (Table V); consequently a coarse 

I t  i 

0 .5  I .  

I- 
Figure 5. Current profiles at hourly intervals over a tidal period (T=  12 h), computed with five modes in the vertical 
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Table VI. Height (m) above the bed of near-bed and near-surface grid points for a range of grid types 
computed with N = 100 grid boxes in the vertical in a water depth h= 10 m 

Height of near-bed point Height of near-surface point 

Grid type 1 2 3 N - 3  N-2 N-1 

Kappa ( K =  1.0) 0.063 0.126 0.190 9.505 9.667 9.832 
Kappa ( K  = 14.0) 0.007 0.015 0.023 3.537 4.253 5.687 
Log-linear (so = 0901 m) 0.00 1 0.0012 0.0014 8.911 9.269 9.632 

grid is sufficiently accurate (see currents in Table V, computed in a water depth h = 100 m 
with K =  14.0). 

Similar conclusions with regards to the accuracy of the kappa grid were found when the eddy 
viscosity was computed using equation (33), in which the viscosity is determined from the current 
and water depth. Again with this formulation of eddy viscosity an accurate solution could be 
obtained with five modes in the vertical, which was in good agreement with solutions computed 
using a logarithmic or log-linear transformed grid (see Table V). 

It is apparent from Table V that at a height of 1 m above the sea bed there are significant 
differences, of order 22 cms-', in the D2-harmonic (40 cms- '  compared with 62 cms- ')  com- 
puted from the eddy viscosity related to u2 rather than hu. Differences of this order are also 
evident at  a height of 5 m above the sea bed. It is also clear from Table V that there are some 
significant differences in the D,-component of the current, which is approximately twice as large 
when the eddy viscosity is related to u2 rather than hu. However, in a water depth of loom, 
currents computed with the various viscosity options do not exhibit such large differences, e.g. 
values of 64 compared with 58 cm s-  ' at 1 m above the bed (see Table V), with smaller differences 
higher in the water column. Values of the higher harmonic D, at 1 m above the bed are again 
twice as large for the u2-formulation of viscosity compared with the hu-formulation. 

The close agreement of the currents computed with the modal, transformed grid and kappa 
methods confirms that the differences in current computed using the u2- and hu-formulations of 
viscosity are due to physically realistic effects. It is also evident from a comparison of Tables IV 
and V that in deep water, h =  100 m, currents computed with viscosity profile B using a time- 
independent or time-dependent formulation of viscosity show little difference in magnitude, 
except in the near-bed region z = 1 m where some slight differences are evident, i.e. 60 cm s -  ' for p 
constant, 65 cms-' for pccu2 and 58 cmsc'  for pcchu. However, in shallow water, h =  10 m, at 
z = 1 m significant differences are evident, i.e. 15 cm s- ' for p constant, 39 cm s-  for p cc u2 and 
63 cm s- '  for pcchu.  The large difference in current computed with the hu- and u2-formulations in 
a water depth of 10 m suggests that current measurements in such water depths should be able to 
distinguish between these formulations of eddy viscosity. Also, since the D,-harmonic is only 
produced with a time-varying eddy viscosity, some measurements of its value in the near-bed 
region would be very valuable. 

In these calculations, rotational effects were ignored. However, calculations including the 
influence of rotation showed similar rates of convergence for the modal, logarithmic or 
log-linear transformed grid and kappa methods. 

4. WIND WAVE INDUCED CURRENTS 

It is evident from the previous section that the solution of the hydrodynamic equations for tidal 
flow at a point can be accurately reproduced using either a modal representation or a grid box 
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through the vertical. In the case of tidal flow the boundary layer thickness can exceed 
(for h= 10 m) or be a significant fraction of (for h= 100 m) the water column. In a wind wave 
problem, however, the boundary layer thickness is only of order 0 1  -0.2 m and consequently 
is only a small, highly sheared fraction of the water column (see Figure 6). The frequencies of 
wind waves are significantly higher (typically between 6 and 12 s) than those of tidal waves. 

In shallow regions (water depth of order less than 30m), wind waves have a significant 
influence upon the bed stress and are particularly important in determining sediment movement. 
Consequently, in order to be able to accurately predict near-bed currents and stresses in shallow 
water, the numerical method should be accurate for both wind wave and tidal flows. In this 
section the accuracy of the numerical methods applied previously for tidal problems are examined 
for wind wave solutions in which the bottom boundary layer is only a small fraction of the water 
column. 

Wind wave of 8 s period, water depth h = I m. Initially we consider a very shallow region, 
h =  1 m. Eddy viscosity profile B is used in these calculations, with po=O.OOO1 m's-' and 
pl = 0.0050 mz s- '  (a typical value of eddy viscosityz3 for wind waves in shallow water). 

I . 5  L 

I . 5  
h 

r 

0 . 6  

I . 5  
I 

I .5 I. 

Figure 6. Current profiles at 0.8 s intervals over a wave period (T=8 s), computed (A) using 10 modes and (B) using 30 
modes 



118 A. M. DAVIES 

Motion was started from rest by a suddenly applied unit forcing F,= 1.0, G,=0-0 in the x- 
direction of period 8 s-'. A time step of 0.05 s was used in the calculation, giving 160 time steps 
per wave period. The solution was integrated forward in time for approximately 40 wave periods, 
by which time the influence of the initial condition of zero motion had been removed and the 
solution was periodic. The reason for a long integration period can be readily appreciated using 
equation (32) and appropriate values from Table 11, giving T, = 271 s, which for an 8 s- ' period 
wave corresponds to 34 wave periods. The amplitude and phase of the various harmonics were 
then obtained by harmonic analysis of the current velocities at each time step over a full wave 
period. 

In an initial series of calculations a log-linear transformation was applied in the vertical, with 
so = 0001 m and s* = 0.5 m, and a range of grid boxes, N ,  in the vertical. In a second series of 
calculations a logarithmic transformation was applied in the vertical, with so = O~OOOO1 m. Also, a 
similar set of calculations were performed using a range of modes. The computed amplitude and 
phase of the fundamental harmonic at various heights z above the sea bed are given in Table VII. 

Table VII. Amplitude h, (cm s - l )  and phase go  (deg) of near-bed wave induced currents computed with a 
time-independent viscosity in a water depth h= 1 m 

Number of grid boxes, N 

10 20 40 60 
Height 
(m) h0 go h0 90 ho go h0 go 

Log-linear grid (so = 0,001 m, s* = 0.5 m) 
0.00 1 5.5 107 3.7 
0-0025 14.3 239 14-7 
0.005 32.2 24 1 32.2 
0.0 1 53.0 245 53.3 
0.1 103.3 265 103-5 

Logarithmic grid (so = O~OOOO1 m) 
0~001 10.9 239 11.4 
0.0025 23.4 24 1 24-7 
0.005 39.8 243 40-0 
0.0 1 56.5 246 59.0 
0.1 101.7 265 103.3 

155 
239 
242 
246 
265 

240 
24 1 
244 
247 
265 

2.2 195 
14.7 239 
32.2 242 
53.8 246 

103.7 266 

11.5 240 
24.8 24 1 
40.5 244 
59.8 247 

103.6 266 

1.6 205 
14.9 239 
32.2 242 
54.1 246 

103.7 266 

11.6 240 
24.9 24 1 
40.6 244 
60.0 247 

103.7 266 

Number of modes, M 

5 10 15 30 
Height 
(m) ho go h0 g o  h0 go h0 go 

Functional model 
0.00 1 9.3 258 10.7 249 11.1 245 11-6 24 1 
0.0025 20.2 258 23.2 249 24.1 245 24.9 24 1 
0.005 33.7 258 38.6 249 39.8 246 407 243 
001 51.7 258 58.5 250 59.8 248 59.9 247 
0 1  105.6 264 103.1 266 103.3 266 103-3 266 
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It is evident from this table that the near-bed currents computed with s,=O.OOl m are 
significantly lower than those determined using the logarithmic transform or the functional 
model. In the case of s,=O*OOl m the first grid box at which the current is non-zero is only 
0401 m above the sea bed. With such a coarse near-bed grid the high-shear bed layer cannot be 
resolved and this significantly reduces the currents within the bottom 1 cm of the water column. 

Decreasing so to 0oooO1 m and using a logarithmic transform in the vertical gives enhanced 
bed resolution in the model (when N = 2 0  there are 10 grid boxes in the bottom 0001 m layer). 
Computed currents based upon the logarithmic transform and the modal method are in excellent 
agreement, with the order of 10-15 modes being able to resolve the near-bed region. 

This calculation clearly shows that for wind wave problems where the bottom boundary layer 
is particularly thin, of order 10 cm, it is essential to use a small value of so with a transformation 
that gives maximum resolution in the near-bed layer (i.e. a logarithmic transform). If so is not 
sufficiently fine then the computed current is incorrect. In the case of the modal model there is no 
parameter so whose value must be chosen in a subjective manner, and to this extent it has some 
advantage over the grid box method. 

Wind wave of 8 s period, water depth h = 10 m. In a second series of calculations the water depth 
was increased to 10 m and the eddy viscosity p1 to 0.1 m2 s- '  to represent a turbulence intensity 
higher up in the water column, which might occur if wind wave and tidal current were present in 
combination. 

With this water depth it was necessary to integrate for the order of 90000 time steps (over 560 
wave periods, i.e. over 1 h) before a periodic solution could be obtained. 

As was shown in Section 3, the reason for this can be clearly understood from equation (32), 
which, using parameters given in Table 11, gives TD of order 0.42 h. For a tidal flow problem where 
the flow period is of order 12 h the time required for the transients to decay is therefore a fraction 
of a tidal period. However, for wind wave problems where the wave period is of order 8 s many 
hundreds of wave periods are required to remove the initial transients. 

It is evident from Table VIII that the shear in the near-bed layer (the water column in the 
bottom 0.01 m) is higher in this calculation than in the previous one. This is because the layer 
thickness h ,  is a fixed fraction of the water column, and consequently when the water depth 
increases, the low-viscosity near-bed layer increases in thickness. This is certainly a deficiency of 
the present model in that physically the thickness of this near-bed layer would probably be 
independent of water depth. Although the viscosity profile used in this calculation may be 
physically unrealistic, it does demonstrate that an accurate solution can be obtained with the 
modal approach, although the number of modes required is larger than in the previous example 
(see Table VIII). 

Comparing the modal solutions in Tables VII and VIII, it is evident that the current 001 m 
above the bed can be accurately computed in a water depth of 1 m by using 15 modes in the 
vertical, whereas in a water depth of 10 m the modal solution converges more slowly, with 30 
modes required to give a solution comparable to that obtained with the logarithmic transform at 
a height of 0.01 m. 

It is also clear from Table VIII that an accurate solution can be obtained using a log-linear 
transform provided that so is sufficiently fine (i.e. so = 0.0001 m). 

Wind wave of 8 s period, water depth h = 10 m, time-dependent viscosity. As with the tidal 
problem, it is probably more physically realistic to assume that the eddy viscosity will evolve over 
the wave period, using equation (33) or (34) to relate the viscosity to the flow field. 
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Table VIII. Amplitude ho (cm s - ' )  and phase go  (deg) of near-bed wave induced (T=8  s- ' )  currents 
computed with a time-independent viscosity in a water depth h= 10 m 

Number of grid boxes, N 

10 20 40 60 
Height 
(m) h0 g o  h0 90 h0 go h0 go 

Logarithmic grid (so =O~OOOOl m) 
0.0 1 56.9 249 60.5 
0.025 81.8 254 84.5 
0.05 95.7 258 99.1 
0.10 105.6 262 108.2 
1 .oo 107.7 269 107.7 

Log-linear grid (so = 09001 m, s, = 5.0 m) 
0.0 1 57.4 249 60.2 
0.025 79.5 253 83.1 
0.05 98.7 258 97.8 
0.10 104.4 262 107.2 
1 .oo 107.9 269 107.6 

250 
254 
259 
263 
269 

250 
254 
258 
263 
269 

61.5 250 
84.8 254 
98.9 259 

107.8 263 
107.6 269 

61.1 250 
84.3 254 
98.8 258 

107.9 263 
107.6 269 

61.7 250 
84.8 254 
99.0 259 

107.9 263 
107.6 269 

61.1 250 
84.6 254 
99.0 259 

107.8 263 
106.7 269 

Number of modes, M 

5 10 15 30 
Height 
(4 h0 go h0 go h0 go ho go 

Eigenfunction model 
0.0 1 39.1 267 49.9 262 54.7 256 58.5 250 
0.025 56.6 267 71.4 262 77.4 258 80.2 254 
0.05 70.4 267 87.1 263 92.3 259 93.0 259 
0.10 83.7 267 99.4 264 101.7 262 100.8 264 
1 .oo 104.2 268 99.0 269 100.1 268 99.9 269 

In a final series of calculations the current amplitude and phase were computed in a water 
depth of 10 m using eddy viscosity profile B and the same form and time variation of viscosity 
used for the tidal flow problem. Solutions were computed using 30 modes in the vertical, and 60 
grid boxes based on both logarithmic and log-linear transforms with various values of so and s* 
(Table IX). 

It is evident from Table IX that the currents computed using a finite difference grid are 
essentially independent of the transformation used, provided so is sufficiently small. The currents 
computed using the modal representation through the vertical, although of the order of 5 cm s- '  
smaller in the upper part of the bottom boundary layer, are in general in good agreement, 
particularly in the high-shear bottom layer, with those computed using a grid representation in 
the vertical. 

The good agreement between the modal representation and that using a transformed grid is 
particularly encouraging, since in this case the bottom boundary layer has a thickness of only 
0 1  m, i.e. only occupies 1% of the water column. In such cases a logarithmic transform in which 
maximum resolution is concentrated within this bottom boundary layer would be optimal, since 
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above this layer (see Figure 6) there is no shear in the water column and minimum resolution is 
required. It is evident from Figure 6, profiles A and B, that the wave induced currents computed 
with 10 modes (M= 10, profile A) exhibit physically unrealistic ripples above the bottom 
boundary layer. However, when the number of modes is increased to 30, these ripples disappear 
(see Figure 6, profile B) and the high-shear bottom boundary layer is reproduced. The fact that 
the modal model can reproduce this high-shear bottom boundary with the order of 30 modes, 
coupled with the computational economy of the method and the insight associated with it, is 
particularly valuable. 

Again, as with the tidal problem, it is evident that close to the bed (i.e. 0.025 m above it) there 
are some differences in current magnitude (i.e. 85 cm s W 1  for p constant, 90 cm s - l  for p a u 2  and 
108 cm s-'  for p z h u )  depending upon the eddy viscosity formulation. Also of particular interest 
is the second harmonic (D6), which is absent in the time-invariant viscous flow problem but is 
significantly larger when p a u 2  than when p z h u  (see Table IX). 

It appears unlikely that open sea measurements will be able to measure with accuracy currents 
only 2.5 cm above the sea bed. Also, in many cases, ripples on the sea bed would be comparable in 
magnitude. However, laser Doppler current meters in laboratory flumes should be able to make 
such near-bed measurements, which hopefully would distinguish these various formulations of 
viscosity. 

5. CONCLUDING REMARKS 

In this paper a point model through the vertical has been used to assess the accuracy and 
computational efficiency of using a finite difference grid or a modal representation through the 
vertical in determining the profile of tidal or wind wave induced currents. 

A no-slip condition was applied at the sea bed, and with a physically realistic profile of eddy 
viscosity a resulting high-shear bottom boundary layer occurred. In order to accurately resolve 
this high-shear layer, a logarithmic or log-linear transformation was used in the vertical before 
applying a uniform finite difference grid on the transformed co-ordinate. An alternative to 
transforming in the vertical was the application of an irregular finite difference grid with grid 
spacing graded to retain second-order accuracy (a kappa grid). By varying the rate of change of 
the grid spacing, a very fine grid in the near-bed region was obtained. 

In an alternative approach a modal method was used in the vertical. These modes were 
computed in terms of an expansion of 60 B-splines based upon a knot distribution with high 
resolution in the bottom boundary layer. By this means a set of modes were computed which 
could accurately resolve the high-shear near-bed layer. 

Calculations showed that in the case of tidal currents, where the high-shear bottom boundary 
layer extended through the water column or was a significant fraction of it, an accurate solution 
could be obtained using five to 10 modes. Finite difference solutions of comparable accuracy 
required the order of 20 grid boxes on a log-linear transformed co-ordinate. An accurate solution 
could also be obtained using an irregularly spaced grid in the vertical (the kappa method). 
However, a high value of kappa (K > 10) with a significantly larger number (order 60) of grid boxes 
than that used with the log-linear transformation was required. 

In the case of a wind wave problem, the high-shear layer is confined to the near-bed region, and 
in a water depth of order 10 m occupies only 1 % of the water column. A uniform finite difference 
grid on a logarithmic transformed co-ordinate appeared optimal in this case since it gives 
maximum resolution in the high-shear bottom boundary layer. 

The modal method also gave a solution of acceptable accuracy in this problem provided the 
number of modes was of order 3&a significantly larger number than the five modes required for 
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tidal flow in this water depth. It is evident from these calculations that the critical parameter 
controlling the number of modes required in the solution is the ratio of shear boundary layer 
thickness to water depth. When this ratio is small (of order 1%) it appears that the order of 30 
modes or more is required, whereas when the boundary layer thickness is comparable to the 
water depth an accurate solution can be obtained with five modes. Certainly when the ratio is 
small, the finite difference method with a logarithmic transformed co-ordinate is optimal in the 
sense that a smaller number N of grid boxes than modes M are required in the vertical. Although 
more modes are required than grid boxes in this case, the computational efficiency of the modesi6 
coupled with the ability to produce highly vectorizable algorithms based upon them” makes 
their application particularly attractive on vector-processing computers. Also, for problems 
involving wave-current interaction, both wave and current boundary layers will co-exist and the 
logarithmic transform will no longer be optimal. 

The principal difficulty with the modal method is that although the magnitude of eddy viscosity 
can vary with horizontal position and time, the profile of viscosity has to remain constant unless 
the modes are to be recomputed during the course of the calculation, with the associated high 
computational cost. However, three-dimensional simulations of tidal flow on the European 
Continental Shelf using a no-slip bottom boundary condition and a modal method in the vertical 
suggest that, provided a physically realistic profile of viscosity is used, the computed current 
profiles are in good agreement with observations. Further calculations and comparisons using 
this three-dimensional model are presently in progress and will be reported in due course. 

The calculations presented in this paper show clearly that the computed tidal current profiles 
determined using a constant eddy viscosity in the vertical are significantly different in shallow 
water than those computed using a near-bed reduction in eddy viscosity. Also, significant 
differences (particularly in shallow water) are found between current profiles computed with time- 
varying and time-independent viscosity. 

The fact that the currents computed with the modal, transformed grid and kappa methods are 
in close agreement confirms that the differences in current computed using the u2- and hu- 
formulations of viscosity are due to physically realistic effects. The large differences in current 
found with these two different formulations in a water depth of 10m suggest that current 
measurements in such water depths could distinguish between these viscosity formulations. Also, 
the fact that the third harmonic (Da) is only produced with a time-varying viscosity indicates that 
measurements of its value in the near-bed region would also yield significant insight into the 
viscosity formulation. By this means, appropriate formulations of eddy viscosity could be verified 
by a combination of models and measurements. 
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